
YASDI-10NE:KS1106 

Implementation of the SMA Data Protocol  

Edition 1.0

Documentation  

YASDI 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 2 -  SMA Technologie AG 

Revision History 

 

Document 
number 
YASDI 

Version  
and Alteration 

 Review 1) 

Comments Author 

-11:NE1106 1.0 A Translation from German Version 1.0 Prüssing 

 

1) A: Alterations due to faulty documents or improvement of the documentation 

 B: Alterations maintaining full or upward compatibility 

 C: Alterations limiting or excluding compatibility 

 

 Name Date Signature 

Reviewed Prüssing   

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 3 -  SMA Technologie AG 

Explanation of Symbols used in this Document 

To enable optimal usage of this manual and safe operation of the device during in-

stallation, operation and maintenance routines, please note the following description 

of symbols. 

 

 

 

This symbol indicates information that is required for the optimal 

operation of the product. Read these sections carefully in order to ensure 

an optimal operation of the product and all its features. 

 

 

This symbol indicates information that is essential for a trouble-free and 

safe operation of the product. Please read these sections carefully in 

order to avoid any damages of the equipment and for optimal personal 

protection. 

 

 

This symbol indicates an example. 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 4 -  SMA Technologie AG 

Content 

1 Introduction .........................................................................................................6 

2 Software – Brief Overview...................................................................................7 

2.1 Description of the Layers ............................................................................8 

2.1.1 Physical Layer (Layer 1) ........................................................................8 

2.1.2 Data Link Layer (Layer 2).......................................................................8 

2.1.3 Network Layer / Transport Layer (Layer 3/4)..........................................8 

2.1.4 Session Layer / Presentation Layer (Layer 5/6) .....................................9 

2.1.5 Application Layer (Layer 7) ..................................................................10 

3 The Library Interfaces .......................................................................................11 

3.1 Data Types Used......................................................................................11 

3.2 YASDI Master Library API ........................................................................11 

3.2.1 Initialization Functions..........................................................................11 

3.2.2 Functions for Sending Requests to Measurement Channels ...............13 

3.3 The YASDI Library API .............................................................................25 

3.3.1 Interface Driver Control ........................................................................26 

3.3.2 Monitored Transfer of SMA Data Packets............................................28 

3.3.3 Simple Slave API .................................................................................30 

3.4 API Usage: An Example ...........................................................................32 

3.5 Initialization File ........................................................................................33 

4 Internal Structures.............................................................................................39 

4.1 Packet Buffer Management ......................................................................39 

4.2 Installation of the Library Interfaces ..........................................................40 

4.2.1 Unix (Linux) ..........................................................................................40 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 5 -  SMA Technologie AG 

4.2.2 Windows ..............................................................................................41 

4.3 Project Directory Structures......................................................................41 

5 Creation of a YASDI Application .......................................................................43 

5.1 Creation of the Linux Shared Objects .......................................................43 

5.2 Creation of the Linux Shell Application .....................................................43 

 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 6 -  SMA Technologie AG 

1 Introduction 

This document describes the structure and usage of the "YASDI" software program 

for communication with SMA devices. The name "YASDI" stands for "Yet Another 

SMA Data Implementation".  

Functioning as a driver system without its own graphical interface, the software 

implements communication with SMA devices (e.g. SunnyBoy inverters) using "SMA 

Data Protocol" via "SunnyNet" and "SMANet". 

The software has been designed in such a way that it can be easily adapted to other 

environments (operating systems). At the time of this document's release, there exist 

adaptations for Windows (Win32) and Linux. All system-dependent functions are 

abstracted from the operating system via an interface.  

The software is written in "C", and allows maximum possible portability to other 

possible target platforms. Although an object-oriented language is not used, there is 

nevertheless an attempt made to realize an object-oriented structure with the "C" 

language. 

The implementations for Windows and Linux are executed as libraries (Windows: 

DLL, Linux: SO). Another utilization, for example as part of a "monolithic" program, is 

also possible.  

YASDI primarily implements the master functionality of the SMA Data Protocol. Slave 

functions can also be easily implemented by utilizing the rudimentary functions for 

sending and receiving packets. 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 7 -  SMA Technologie AG 

2 Software – Brief Overview 

During the implementation of YASDI, the program was based on the OSI layered 

model for network protocols. The individual layers are grouped in particular libraries, 

which can be seen in the following overview: 

 

 

Driver Layer

Serial Driver
RS232, RS485

Powerline

OSI Layer  2
(Data link layer)

OSI Schicht 1
(Physical layer)

Protocol Layer
SMA-NetSunny-Net

SMA Data LayerOSI Layer  4
(Transport layer)

OSI Layer  3
(Network layer) Packet Router

Packet  Fractionizer Packet  Defractionizer

Master

OSI Layer  7
(Application layer)

OSI Layer  6
(Presentation layer)

OSI Layer  5
(Session layer)

YASDI Master Library API

Object
Manager

Li
nu

x:
lib

ya
sd

im
as

te
r.s

o
W

in
do

w
s:

ya
sd

im
as

te
r.d

ll

Li
nu

x:
lib

ya
sd

i.s
o

W
in

do
w

s:
ya

sd
i.d

ll

Li
nu

x:
lib

ya
sd

i_
dr

v_
se

ria
l.s

o
W

in
do

w
s:

ya
sd

i_
dr

v_
se

ria
l.d

ll

State
Machine

DOM-
Objects

Slave API (not
implemented)

. . .

O
S

-L
ay

er

R
ep

os
ito

ry

S
ch

ed
ul

er

Slave
(not

implemented!)



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 8 -  SMA Technologie AG 

2.1 Description of the Layers 

2.1.1 Physical Layer (Layer 1) 

The software in layer 1 is primarily provided for low-level communication. It is only 

responsible for sending individual signals over the transmission medium and for 

the correct handshake on connections. It consists of the individual interface 

drivers, each of which corresponds to its own bus medium. At the time of this 

document's release, there is only one serial interface driver. In Windows, this 

driver can control the serial ports (COM1 to COM8) as RS232, RS485 or 

Powerline, in Linux, correspondingly, the interfaces "ttyS0" to "ttyS7". 

At runtime, several interfaces can be active simultaneously. 

 

2.1.2 Data Link Layer (Layer 2) 

Layer 2 is responsible for processing the correct protocol frame. Here, the 

transport protocols "SunnyNet" and "SMANet" are supported. All framing 

(including checksum calculation) is available in this layer within the corresponding 

objects.  

 

2.1.3 Network Layer / Transport Layer (Layer 3/4) 

This layer implements the SMA Data Protocol. It has an unified application 

interface (API) which greatly simplifies control of the different SMA devices. The 

timeout behavior and any new requests for the devices are implemented. This 

layer also includes encapsulation of the splitting and reassembly of packet 

fragments (M-bit mechanism). The built-in packet router makes sure that 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 9 -  SMA Technologie AG 

transmitted packets are sent to the correct interfaces. By means of dynamic route 

entries, the router knows the correct interface via which a device can be reached. 

The API is an asynchronous packet-oriented interface (IO requests) with callback 

mechanisms. The only information specified is which data content is to be sent to 

which device, with the corresponding timeout times and repeats. 

This layer also implements an interface which abstracts from operating-system-

specific commands. This can be easily adapted for other target platforms.  

A simple function scheduler, which allows cooperative multitasking is included as 

well. The scheduler also implements simple timer functions. 

Slave applications should be based on this layer's API. 

 

2.1.4 Session Layer / Presentation Layer (Layer 5/6) 

In this layer, a specialized SMA data master is implemented. This master is able 

to detect SMA devices and to request their channel values. Alongside requesting 

current measurement values, it can also read and write parameters.  At the time 

of this document's release, it is not possible to request the measurement channel 

records of a Sunny Boy Control. 

The master is implemented as a state machine. It follows the corresponding 

design pattern. 

The master is able to execute data requests on command. However, it can also 

independently send requests to devices on a cyclic basis. 

The devices requested channel lists are temporarily stored on data storage 

devices and are dynamically loaded and interpreted at runtime.  



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 10 -  SMA Technologie AG 

Within this layer, a system device structure is generated corresponding to the 

detected SMA devices, namely device objects and channel objects which can be 

identified externally via a handle mechanism. The handles are generated and 

managed by the specialized object manager which is also included here. 

 

2.1.5 Application Layer (Layer 7) 

Layer 7 describes the actual externally utilizable interface of the SMA data 

master. The master can be completely controlled via this interface. The API is 

kept as simple as possible to easily enable requests, also from other software 

tools which were not written in C/C++. The API utilizes devices and channel 

handles, via which each of these objects can be accessed.  

This interface is externally synchronous! This means, for example, that functions 

for the acquisition of measurement values block until they have been completely 

processed. 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 11 -  SMA Technologie AG 

3 The Library Interfaces 

3.1 Data Types Used 

In the interface definition, data types are used which are listed below (defined in the 

file "smadef.h"): 

Data type Data type description 

DWORD 32-bit unsigned 

WORD 16-bit unsigned 

BYTE 8-bit unsigned 

 

3.2 YASDI Master Library API 

This is the interface of the so-called master. It can actively send requests to all 

connected SMA devices. Handles are used to access devices and channels via the 

API. These are nothing more than simple 32-bit signed values (DWORD) which are 

used internally by YASDI. 

The interface is subdivided into two halves. The first part is concerned with the 

initialization of the library.  The actual communication with the individual devices 

occurs via the functions provided by the second part of the library. 

3.2.1 Initialization Functions 

 
void yasdiMasterInitialize( char * cIniFileName, DWORD * pDriverCount) 
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 12 -  SMA Technologie AG 

Initialization of the YASDI master library. This function must be executed exactly 

once, before any other library functions are executed. 

Parameters: 

The pointer "cIniFileName" points to the path and file name of the required 

initialization file (INI). If no name is given, "yasdi.ini" is searched for in the current 

directory. If it is not found, the next location examined (in Linux) is in the user 

directory under ".yasdi/.globalconfig.ini". Relative paths can be given (e.g. 

"./MyYasdiConfig.ini"). The structure of the INI file is described in chapter 3.5. 

The pointer pDriverCount points to a variable which, when called, returns the 

number of interface drivers currently loaded in YASDI. 

 

 

 
void yasdiMasterShutdown( void ); 
 
 
 

By calling this function, all storage space and resources used by the YASDI master 

library are once again released for general use. This function should always be 

executed after using YASDI. No parameters need to be passed. 

 

 
void yasdiReset( void ) 
 
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 13 -  SMA Technologie AG 

This function completely resets the software. Any currently detected devices are 

removed. The software is then in a condition much the same as when the function 

"yasdiMasterInitialize(...)" has just been executed. 

 

3.2.2 Functions for Sending Requests to Measurement Channels 

The following functions make it possible to send requests to available devices and to 

read values from the current measurement channels. 

 
DWORD GetDeviceHandles(DWORD * Handles, DWORD iHandleCount) 
 
 
 

This function requests all currently detected SMA devices. Exactly one handle is 

delivered for each device. 

Parameters: 

The parameter "Handles" points to an array which is to record the device handles. 

Every handle's data type is DWORD. The maximum number of handles which can be 

recorded in the array is passed with the "iHandleCount" parameter. Before calling 

this function, the array with iHandleCount elements must first be created! 

Result: 

The return value of the function is the number of handles which actually get stored in 

the array. 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 14 -  SMA Technologie AG 

 
int GetDeviceName( DWORD DevHandle, char * DestBuffer, int len) 
 
 
 

This function provides the device name pertaining to a device handle. At the time of 

this document's release, every device name comprises the device type, the string 

"SN:", and the device's serial number. 

Parameters: 

"DevHandle" denotes the handle of the device, of which the name is to be 

determined. "DestBuffer" refers to the destination buffer, in which the device name is 

to be written. The size of the maximum available space in bytes is passed with the 

parameter "len". 

Result: 

The return value of the function is the actual amount of space taken up by the string 

(string length). 

 

 
 
int GetDeviceSN( DWORD DevHandle, DWORD * SNBuffer ); 
 
 
 

By calling this function, the serial number of a device can be determined.  

Parameters: 

The parameter "DevHandle" again denotes the device handle. "SNBuffer" refers to 

the storage area, in which the serial number is to be saved. The serial number is 

stored as a DWORD value. 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 15 -  SMA Technologie AG 

Result: 

A return value of "0" means OK. "-1" signifies that the handle was invalid, and that 

there is no corresponding device. 

 

 
 
int GetDeviceType(DWORD DevHandle, char * DestBuffer, int len) 
 
 
 

With this function, the device type can be determined. The device type consists of a 

string with currently a length of 8 characters (see SMA data specification "SMA DAT-

12:ZD"). 

Parameters: 

"DevHandle" again denotes the device handle. With "DestBuffer", the destination 

buffer for recording the device type is passed. "len" denotes the maximum available 

space in the storage area. 

Result: 

"0" means OK. "-1" means that the device handle is invalid. 

 

 
 
DWORD GetChannelHandles(DWORD pdDevHandle, 
                        DWORD * pdChanHandles, 
                        DWORD dMaxHandleCount, 
                        WORD wChanType, 
                        BYTE bChanIndex); 
 
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 16 -  SMA Technologie AG 

With this function, all of a device's channels can be determined. Each channel again 

corresponds to a handle. A channel mask for pre-selection can be given. 

 

Parameters: 

The parameter "pdDevHandle" again denotes the device (handle), the channels of 

which are to be determined. "pdChanHandles" refers to the array which is to record 

the channel handles. "dMaxHandleCount" denotes the maximum number of handles 

which can be recorded in the array. With the two parameters "wChanType" and 

"bChanIndex", the channel masks must be passed in accordance with the SMA data 

specification. 

Example: 

 

WChanType = 0x040f and bChanIndex = 0 denotes all parameter 

channels  

WChanType = 0x090f and bChanIndex = 0 denotes all spot value 

channels 

 

 

 

 
 
DWORD FindChannelName(DWORD pdDevHandle, char * ChanName); 
 
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 17 -  SMA Technologie AG 

Using this function, a channel can be searched for on the basis of its name. It will 

return the channel handle of the first suitable channel (according to name). 

Parameters: 

"pdDevHandle" denotes the device handle. "ChanName" denotes the channel name 

to be searched for. 

Result: 

If "0" is returned, the channel was not found. If the value is greater than "0", the value 

corresponds to the channel handle. 

 

 
 
int GetChannelName( DWORD dChanHandle, 
                    char * ChanName, 
                    DWORD ChanNameMaxBuf); 
 
 
 

This function provides a device's channel name. 

Parameters: 

With the parameter "dChanHandle", the channel handle is passed. "ChanName" is 

the destination buffer area for the channel name. "ChanNameMaxBuf" denotes the 

size of the destination buffer's maximum available storage space. 

Result: 

"0" => Everything OK. 

"-1" => Error: channel handle is invalid! 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 18 -  SMA Technologie AG 

 
 
int  GetChannelValue(DWORD dChannelHandle, 
                     DWORD dDeviceHandle, 
                     double * dblValue, 
                     char * ValText, 
                     DWORD dMaxValTextSize, 
                     DWORD dMaxChanValAge) 
 
 
 

This function provides the value of a channel. It is possible to predefine for the 

function how "old" the channel value is allowed to be. The function works 

synchronously, i.e. it blocks until either the channel value has been returned, or an 

error has occurred. 

Parameters: 

"dChannelHandle" denotes the channel handle. Using the parameter 

"dDeviceHandle", the device handle to which the channel belongs is passed. 

"dblValue" refers to the storage area for recording the channel value (double value, 8 

byte). If there is also a channel text for a channel, this is written to the storage area, 

which can be passed with "valText". "dMaxValTextSize" denotes the maximum size 

of the storage area for the status text. "dMaxChanValAge" denotes how long ago the 

time of measurement value determination can date back (in seconds). A value of "0" 

forces a retrieval of the current value. Any channel values are temporarily stored in 

the software. A value of 10 means that the channel value can be at most 10 seconds 

old. If it is older, the value is automatically retrieved anew from the device. 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 19 -  SMA Technologie AG 

 

Result: 

The function returns the following values: 

0 ==> Everything OK: channel value is valid... 

-1 ==> Error: channel handle was invalid... 

-2 ==> Error: YASDI driver is in the "ShutDown" state 

-3 ==> Error: timeout during new retrieval of channel value 

-4 ==> Error: unknown error; channel value invalid 

 
 
DWORD GetChannelValueTimeStamp( DWORD dChannelHandle ) 
 
 
 

Calling this function returns the time stamp of a channel value. 

Parameters: 

The parameter "dChannelHandle" denotes the channel for which the last time stamp 

of its channel value is to be determined. The time is passed as UNIX time with the 

time zone Greenwich Mean Time (GMT+0). 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 20 -  SMA Technologie AG 

 

 
 
int GetChannelUnit( DWORD dChannelHandle, 
                    char * cChanUnit, 
                    DWORD cChanUnitMaxSize) 
 
 
 

This function provides a channel's channel unit as a string. 

Parameters: 

The parameter "dChannelHandle" denotes the channel handle for which the channel 

unit is to be requested. "cChanUnit" refers to the destination buffer for recording the 

channel unit string. The buffer must be prepared before calling this function. The 

parameter "cChanUnitMaxSize" denotes the maximum size of the destination buffer.  

 
 
int GetMasterStateIndex() 
 
 
 

This function returns the current state of the YASDI master. Each of the master's 

states is represented by means of a specific constant.  

Result: 

The following states are defined: 

#define MASTER_STATE_INIT           1 /* Initial state of the machine  */ 
#define MASTER_STATE_DETECTION      2 /* Detection of devices          */ 
#define MASTER_STATE_CONFIGURATION  3 /* Network address configuration */ 
#define MASTER_STATE_IDENTIFICATION 4 /* Channel lists request         */ 
#define MASTER_STATE_CONTROLLER     5 /* Master command processing     */ 
#define MASTER_STATE_CHANREADER     6 /* Read channels (spot/parameter)*/ 
#define MASTER_STATE_CHANWRITER     7 /* Write channels (parameter)    */ 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 21 -  SMA Technologie AG 

 

 
 
int SetChannelValue(DWORD dChannelHandle,  
                    DWORD dDevHandle,  
                    double dblValue) 
 
 
 

This function sets the numerical value of a channel. 

Parameters: 

The parameter "dChannelHandle" denotes the handle of the channel to be set. 

"dDevHandle" is the device to which the channel belongs. With "dblValue", the new 

channel value is passed. 

Result: 

The function returns the following values: 

0 ==> Everything OK: new channel value was taken from the device... 

-1 ==> Error: channel handle was invalid... 

-2 ==> Error: YASDI is already deactivated ("ShutDown") 

-3 ==> Error: timeout when setting channel; value not set 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 22 -  SMA Technologie AG 

 

 
 
int GetChannelStatTextCnt(DWORD dChannelHandle) 
 
 
 

If status texts exist for a channel, this function returns the number of channel texts for 

the channel. The texts can then be easily requested with the function 

"GetChannelStatText(...)". 

Parameters: 

"dChannelHandle" denotes the channel handle. 

Result: 

Number of channel texts for this channel. 

 

 
 
int GetChannelStatText(DWORD dChannelHandle,  
                       int iStatTextIndex, 
                       char * TextBuffer,  
                       int BufferSize); 
 
 
 

 

This function returns a specific status text belonging to the channel. The number of 

texts should first be requested with the function "GetChannelStatTextCnt(...)". 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 23 -  SMA Technologie AG 

 

Parameters: 

"dChannelHandle" again denotes the channel handle. 

"iStatTextIndex" denotes the index of the channel status text which is to be 

requested. This begins with "0". 

"TextBuffer" points to the storage area, into which the text is to be copied. 

"BufferSize" is the maximum number of characters which can be copied. 

 

Result: 

"0" Everything OK (result valid). 

"-1" Invalid channel handle was passed. 

 

 
 
int GetChannelMask( DWORD dChannelHandle, 
                    WORD * ChanType, 
                    int * ChanIndex); 
 
 
 

Provides the channel mask of a channel, as defined in the SMA data definition.  

Parameters: 

"dChannelHandle" => channel handle 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 24 -  SMA Technologie AG 

"ChanType" => points to the WORD variable for recording the channel type as 

defined in the SMA data specification 

"ChanIndex" => points to the int variable for recording the channel index as defined 

in the SMA data specification 

 

 
 
int DoMasterCmdEx(char * cmd, DWORD Param1, DWORD Param2, DWORD Param3) 
 
 
 

Using this function, it is possible to send commands to the YASDI master. At the time 

of this document's release, only the command for "device detection" exists. To send 

this command, the string "detection" is passed, and the number of devices to be 

detected is passed in parameter "Param1". 

Example: 

 DoMasterCmdEx("detection",3,NULL,NULL); 
 

The example attempts to detect exactly 3 devices. The function blocks until all 

devices have been found, or until an error or timeout occurs. 

Parameters: 

"cmd" points to the command string for processing. 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 25 -  SMA Technologie AG 

The parameters for the master command are passed with the parameters Param1, 

Param2, and Param3. At the time of this document's release, only Param1 is used. 

Param2 and Param3 are not used. 

Result: 

"0" => Command successful ("All devices detected...") 

"-1" => Error during execution ("The requested number of devices could not be 

detected.") 

 

3.3 The YASDI Library API 

Beneath the YASDI master interface, there is another useful interface. Here, 

functions for low-level access to the SMA data protocol are implemented. The API 

contains functions for controlling the connected interface drivers (COM ports). In 

addition, functions for the standardized utilization of SMA data commands with usage 

of timeout times and repeats are provided.  

Another section provides functions for the simple implementation of, for example, 

slave applications.  

These functions should only be used by SMA data slave implementations, with the 

exception of a few functions for the activation of the individual interfaces (COM 

ports). However, implementations for device requests should primarily use the higher 

YASDI master API.  

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 26 -  SMA Technologie AG 

3.3.1 Interface Driver Control 

The following functions control the availability of YASDI interfaces (RS232, RS485, 

Powerline,...). At runtime, YASDI can use several interfaces simultaneously. 

 

 
DWORD yasdiGetDriver(DWORD * DriverIDArray, int maxDriverIDs); 
 
 
 

This function provides all interfaces (drivers) currently available in YASDI. Each 

driver is represented by an ID (a DWORD value). Using this ID, the drivers can each 

be activated or deactivated later (see yasdiSetDriverOnline). An interface can be, for 

example, a serial port "COM1" in Windows. In the initialization file, it is stipulated 

which interfaces can be used. 

Parameters: 

With the parameter "DriverIDArray", a pointer to the storage area (array of 

DWORDs) is passed, in which the interface ID's are to be stored. The parameter 

"maxIDs" denotes the maximum number of interface ID's which can be saved in the 

array.  

Result: 

The function returns the number of currently available interfaces (number of handles 

in the array). 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 27 -  SMA Technologie AG 

 
DWORD yasdiGetDriverName(DWORD DriverID,  
                         char * DestBuffer,  
                         DWORD MaxBufferSize); 
 
 

With this function, the name of an individual interface can be requested. It provides, 

for example, the text "COM1" for the first serial port. 

Parameters: 

The parameter "DriverID" passes the ID of the interface, the name of which is to be 

requested. "DestBuffer" refers to the storage area for recording the interface name. 

The maximum size of the buffer (number of characters) is indicated by the parameter 

"MaxBufferSize". 

Result: 

The function returns the number of characters used in the destination buffer. 

 

 
BOOL yasdiSetDriverOnline(DWORD DriverID); 
 
 

With this function, a YASDI interface can be brought online. This means that this 

YASDI interface can be used immediately. 

Parameters: 

The parameter "DriverID" denotes the interface which is to be connected. 

Result: 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 28 -  SMA Technologie AG 

If successful, the function returns "TRUE" (<>0). This means that the interface was 

successfully connected. In the event of an error, it returns "FALSE" (0). In this case 

the interface is probably already being used by another program. 

 

 
void yasdiSetDriverOffline(DWORD DriverID) 
 
 
 

Calling this function deactivates an interface. The interface can then no longer be 

used by YASDI. 

Parameters: 

The parameter "DriverID" denotes the interface which is to be deactivated. 

 

3.3.2 Monitored Transfer of SMA Data Packets 

These functions enable SMA data packets to be sent and received, with attention 

paid to timeout times and repeats. The YASDI master, for example, uses only these 

functions to carry out requests. 

The functions use a structure for managing monitored requests: 

struct TIORequest  
{ 
 TNode Node;    /* Private! Do not use!                     */ 
 TTimer Timer;   /* Private! Do not use!                     */ 
 
 TReqStatus Status;  /* Current status of the request            */ 
 TReqType   Type;  /* Type of request                          */ 
 
    BYTE Cmd;    /* SMA data command                         */ 
    UWORD DestAddr;  /* Destination address (device netwk. addr.)*/ 
 UWORD SourceAddr;  /* Source address (own address)             */ 
     



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 29 -  SMA Technologie AG 

 VOID * TxData;   /* Pointer to the data area to be sent      */ 
    DWORD TxLength;  /* Size of the send buffer in bytes         */ 
    DWORD TxFlags;   /* Flags for sending (TX_BROADCAST, ...)    */ 
 
    DWORD TimeOut;   /* Timeout for receive packet(s)            */ 
 DWORD Repeats;   /* Send repeats if a timeout occurs         */ 
 
 
 /* --- Callback functions --- */ 
 
 void (*OnReceived)(  
  struct _TIORequest * req, /* Pointer to corresponding IO request*/ 
  WORD SourceAddr,          /* Source of the answer/request      */ 
  BYTE * Buffer,            /* Pointer to the received answer    */ 
  DWORD BufferSize,         /* Size of the received answer       */ 
  DWORD RxFlags);           /* RxFlags:  
                                       TS_BROADCAST,  
                                       TS_STRING_FILTER,  
                                       TS_ANSWER */ 
 
 void (*OnEnd     )(            /* Request has ended                 */ 
         struct _TIORequest * req ); 
 
 void (*OnTransfer)(            /* Data transfer is running          */ 
         struct _TIORequest * req,  
         BYTE prozent );      
} 
 
  
Due to this structure, it is possible to send a packet, and to wait for the corresponding 

answer asynchronously, under time-controlled conditions. It is also possible to only 

send, without waiting for an answer, or to only wait for a specific packet: 

Type = RT_MONORCV  = 0: /* Wait for ONE answer                   */ 
Type = RT_MULTIRCV = 1: /* Wait for many answers                 */ 
Type = RT_NORCV    = 2: /* Do not wait for answer (send only)    */  
 
 

 
 
void yasdiAddIORequest( TIORequest * req ) 
 
 

 
 
This function adds a new IO request to the system. The function returns immediately. 

The processing of the request is completely asynchronous. Depending on what 

happens, the callback functions of the IO request structure may be executed. Once 

the request structure's callback function "OnEnd()" has been called, the request is 

automatically ended. 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 30 -  SMA Technologie AG 

Example: 

TIORequest Req; 
 
void sendGetOnlineValues( TIORequest * Req, WORD DstAddr ) 
{ 
   WORD ChanMask   = 0x090f;      // All online channels                 
   BYTE ChanIndex  = 0;           // Channel index: 0                       
      
   Req->OnReceived = onPacketReceived; // Callback functions           
   Req->OnEnd      = onRequestEnd;  
   Req->TxFlags    = 0;           // No flags                        
   Req->DestAddr   = DstAddr;     // Destination address                        
   Req->SourceAddr = 0;           // Source address: 0                    
   Req->Cmd        = CMD_GET_DATA;// Requesting current values             
   Req->TxLength   = 3;           // Packet contents consist of 3 bytes     
   Req->Repeats    = 4;           // Repeat 4 times if a timeout occurs   
   Req->TimeOut    = 6;           // Timeout of 6 seconds 
   Req->Type       = RT_MONORCV;  // Wait for exactly ONE answer 
   Req->TxData[0] = LOBYTE(ChanMask); 
   Req->TxData[1] = HIBYTE(ChanMask); 
   Req->TxData[2] = ChanIndex; 
   yasdiAddIORequest( Req );   // Start request (asynchronously) 
} 
 
void onPacketReceived(TIORequest * req, WORD SrcAddr,  
                      BYTE * Buffer, DWORD Buffersize,  
                      DWORD RxFlags) 
{ 
   printf("Packet received...\n"); 
   ... 
} 
 
void onRequestEnd(TIORequest * req) 
{ 
   printf("Packet request finished..."); 
   ... 
} 
 
 

 

3.3.3 Simple Slave API 

Slave implementations mainly use this interface, as it is easier to use for these 

requirements. It only has functions for sending and receiving packets. However, 

when receiving, the packets may have already been assembled from fragments, and 

may be split into "portions" when sending (full M-bit support). 

 
void yasdiSendPacket( WORD Dest, 
                      WORD Source, 
                      BYTE Cmd, 
                      BYTE * Data, WORD Size, 
                      DWORD Flags) 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 31 -  SMA Technologie AG 

 
 

This function sends an SMA data packet. There is no confirmation of receipt! 

Answers must be independently waited for, and reacted to. 

Parameters: 

"Dest" = network address of the device to which the packet is to be sent  

"Source" = sender's own network address (usually just "0") 

"Cmd"  = the SMA data command 

"Data" = if applicable, the additional data to be transferred for the SMA data 

command 

"Size" = size of the data area for the transfer 

"Flags" = packet flags:  

 

   TS_BROADCAST     = 1 = Broadcast packet, goes to all devices on the bus 
   TS_ANSWER        = 2 = This packet is an answer to a request 
   TS_STRING_FILTER = 4 = String filter flag: (see SMA data definition) 
 
 
 
 
 
 
 
 
void yasdiAddPaketListener(TPacketRcvListener * listener) 
 
 
 

Using this function, a function can be added for receiving SMA data packets 

(listener). The only parameter which must be passed to the system is a pointer to a 

structure: 

struct TPacketRcvListener 
{ 
   void (OnPacketReceived*)( TSMAData * smadata,  
                             void * RecData, 
                             DWORD Size ); 
} 
    



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 32 -  SMA Technologie AG 

The structure only possesses one pointer to a function which is activated upon 

receipt of a packet.  

Parameters: 

"smadata" = pointer to a structure for managing the received SMA data information: 

typedef struct 
{ 
   WORD SourceAddr; 
   WORD DestAddr; 
   DWORD Flags; 
   BYTE Cmd; 
} TSMAData; 

 
 
 
 
void yasdiRemPaketListener(TPacketRcvListener * listener) 
 
 
 

This function removes the listener which was added by means of the function 

"yasdiAddPaketListener(...)" (parameters: see afore-mentioned function). 

3.4  API Usage: An Example 

A typical YASDI API function call sequence to send requests to SMA data devices 

could look like this: 

/* Initialize YASDI     */ 
yasdiMasterInitialize(...) 
 
/* Return all interface drivers which YASDI recognizes 
   and activate as necessary... */ 
yasdiGetDriver(...) 
yasdiSetDriverOnline(...) 
 
 
/* Search for all connected devices (one, in this case) */ 
DoMasterCmdEx("detect",1,NULL,NULL); 
 
/* Get all device handles */ 
GetDeviceHandles(...) 
 
/* Get all channel handles for this device */ 
GetChannelHandles(...) 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 33 -  SMA Technologie AG 

 
/* Request or set channel values */ 
While( youWant ) 
{ 
 SetChannelValue(...) or  GetChannelValue(...) 
} 
 
/* Deactivate all utilized interfaces */ 
yasdiSetDriverOffline(...) 
 
/* Shut down YASDI */ 
yasdiMasterShutdown() 

 

It has to be noted, that upon beginning API usage, the function 

"yasdiMasterInitialize()" is called once, and upon ending, "yasdiMasterShutdown()" is 

also called once. All other functions of the master API can be used as often as 

desired, in whatever order. 

3.5 Initialization File 

The YASDI initialization file uses the INI format known to Windows users. This is also 

used in the Linux version.  

The file path of the initialization file is passed to the master function 

"yasdiMasterInitialize(...)" (internally, this path is automatically forwarded to the 

"yasdiInitialize(...)" function). The file is made up of various sections: 

"DriverModules" Section 

Entry Description 

"Driver0" ... "Driver9" The interface driver to be used (e.g. 

yasdi_drv_serial.dll in Windows, or 

libyasdi_drv_serial.so in Linux), which 

is to be loaded at runtime. 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 34 -  SMA Technologie AG 

Sections "COM1" to "COM8" 

Entry Description 

Device The filename corresponding to the serial 

interface of the respective operating 

system. (For the first serial interface –

Windows: "COM1", Linux: "/dev/ttyS0"). 

Media The medium which the serial driver is to 

use. At the time of this document's 

release, Powerline, RS232 and RS485 
are supported. 

Baudrate The speed of the serial interface in bits 

per second. The following values can be 

used: 

110, 150, 300, 600, 1200, 2400, 4800, 

9600, 19200, 38400, 57600 

(inverters use 1200 baud, and Sunny Boy 

Control mainly 19200 baud). 

Protocol The transport protocol to be used. The 

options are "SunnyNet" and "SMANet". 

Older Sunny Boy Control devices use 

only SunnyNet. The newer devices can 

handle both protocols. 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 35 -  SMA Technologie AG 

"Misc" Section 

Entry Description 

StatisticOutput File information (path + filename) for 

output of statistical values. YASDI's 

memory usage, as well as the number of 

packets sent to (and received from) the 

devices, is recorded in a file in XML 

format. This entry is optional. It is used 

purely for error identification purposes. 

 

"Master" Section 

Entry Description 

NetAddress Optional parameter for setting the 

network address of the SMA data master. 

The range of values is from "0" (default) 

to "65535". 

ReadParamChanTimeout Timeout time in seconds when reading 

parameter values from devices. This 

entry is optional, and has a default value 

of "6". 

ReadParamChanRetry Number of repeat attempts when reading 

from parameter channels (after timeout). 

This entry is optional. It has a default 

value of "4" (repeats). 

WriteParamChanTimeout Optional parameter for the specification of 

the timeout time when writing to 

parameter channels. The default setting 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 36 -  SMA Technologie AG 

is "6". 

WriteParamChanRetry Optional parameter for the specification of 

the number of repeats when setting 

parameters (default "4"). 

ReadSpotChanTimeout Optional parameter for the specification of 

the timeout time when reading from spot 

value channels. The default setting is "6". 

ReadSpotChanRetry Number of repeat attempts when reading 

from spot value channels (after timeout). 

This entry is optional (default "4"). 

AutoReadOnlineChannels This optional entry stipulates whether the 

spot value channels are to be 

automatically passed from all devices, 

even if at that time nobody is requesting 

the values from the device via the API 

(default value "1"). Accessing the channel 

values may then be somewhat faster. If 

set to "0", a request is only sent to the 

device if someone actually sends it a 

request via the YASDI API. 

DeviceAddrRangeLow The lower limit of the permitted network 

address range (device address allotment) 

of a detected device. This entry is 

optional. The range of values is from "0" 

(default) up to and including "255". 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 37 -  SMA Technologie AG 

DeviceAddrRangeHigh The upper limit of the permitted network 

address range (device address allotment) 

of a detected device. 

This entry is optional. The range of values 

is from "0" up to and including "255" 

(default). 

DeviceAddrBusRangeLow The lower limit of the permitted network 

address range (bus address allotment) of 

a detected device. This entry is optional. 

The range of values is from "0" up to and 

including "255" (default). 

DeviceAddrBusRangeHigh The upper limit of the permitted network 

address range (bus address allotment) of 

a detected device. This entry is optional. 

The range of values is from "0" up to and 

including "255" (default). 

DeviceAddrStringRangeLow The lower limit of the permitted network 

address range (string address allotment) 

of a detected device. This entry is 

optional. The range of values is from "0" 

up to and including "255" (default). 

DeviceAddrStringRangeHigh The upper limit of the permitted network 

address range (string address allotment) 

of a detected device. This entry is 

optional. The range of values is from "0" 

up to and including "255" (default). 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 38 -  SMA Technologie AG 

An initialization file in Windows could look like this: 

 
[DriverModules] 
Driver0=yasdi_drv_serial.dll 
 
#### Section regarding the first serial interface 
[COM1] 
Device=COM1 
Media=Powerline 
Baudrate=1200 
Protocol=SMANet 
 
[Misc] 
 
[Master] 
ReadTestChannels=1 
ReadParamChanTimeout=6 
ReadParamChanRetry=4 
WriteParamChanTimeout=6 
WriteParamChanRetry=4 
ReadSpotChanTimeout=6 
ReadSpotChanRetry=4 
AutoReadOnlineChannels=0 
 
 
 
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 39 -  SMA Technologie AG 

4 Internal Structures 

4.1 Packet Buffer Management  

Using the TNetBuffer class, packet buffers are managed internally, in order to, for 

example, prevent data from being moved or copied unnecessarily upon protocol 

implementation. A packet (TNetBuffer) is made up of any number of fragments. 

Empty packets are permitted. A fragment (TNetBufferFrag) contains any number of 

characters (the actual packet content). Functions exist within the TNetBuffer class, 

which make it possible to work transparently with buffer data. The internal buffer 

management with fragments is invisible from outside. 

(TNetBuffer)

Buffer : * TFrameFrag
Device : * TDevice

AddHead(...);
AddTail(...);
RemHead(...);
GetFrameLength(...);
Copy(...);
Clear(...);
CopyFromBuffer(...);

(TNetBufferFrag)

TNode Node;
DWORD BufferSize;
BYTE * Buffer;
BYTE RealData[1];

0..*

 

 
Figure 1: Packet buffer management 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 40 -  SMA Technologie AG 

User Data

Start StartLengthLength

CmdPktCntCtrlSource Dest.

CS Stop

SMAData Packet
SunnyNet Frame

User Data

User Data

HDLC-
Sync

HDLC-
ProdID

HDLC-
Ctrl

HDLC-
Addr

CmdPktCntCtrlSource Dest.

FCS HDLC-
Sync

SMAData Packet
SMANet Frame

User Data

 

Figure 2: Packet Encapsulation of the SunnyNet and SMANet Telegram Frames 

 

 

4.2 Installation of the Library Interfaces 

4.2.1 Unix (Linux) 

Ideally, the files ("shared objects") "libyasdi.so", "libyasdimaster.so" and 

"libyasdi_drv_serial.so" should be installed in the directory "/usr/local/lib". YASDI 

saves the temporarily stored channel lists in the subdirectory "devices". This 

subdirectory should be situated in the same directory as the provided initialization file: 

 "yasdi.ini"      => Initialization file 
 "devices/"       => Subdirectory for the device channel lists  
 
 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 41 -  SMA Technologie AG 

 

4.2.2 Windows 

In Windows, the files (DLL's) can be stored in a local directory. The standard 

filename of the initialization file is "yasdi.ini"; this file is searched for in the local 

directory belonging to the caller. A "devices" subdirectory should also be created 

here, in which the temporarily stored channel lists can be saved. 

4.3 Project Directory Structures 

YASDI uses a specific directory structure, which is briefly described here: 

Subdirectory Description 

core The core of YASDI.   

driver All of the drivers which YASDI supports are stored 

here. At the time of this document's release, these are 

the serial drivers for Linux and Windows. 

include Various include files. 

libs DLL/SO header files of the two library interfaces 

(YASDI and YASDI master). 

master Implementation of the SMA data master. 

os Operating system abstraction interfaces: all operating 

systems have their own implementation (at the time of 

this document's release, Linux and Windows). 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 42 -  SMA Technologie AG 

protocol Implementations of the transport protocols "SMANet" 

and "SunnyNet". 

smalib Module for reading INI files. 

projects All subprojects which are based on YASDI. These, at 

the time of this document's release, are the following: 

projects/linuxlib Project for the creation of Linux shared libraries (SO) 

for YASDI and YASDI master. 

projects/windowslib Project for the creation of Windows shared libraries 

(DLL) for YASDI and YASDI master. 

projects/CommonShellUI Project for the creation of a small shell application, 

which the YASDI master API uses. This project can 

run in both Windows and Linux. 

 

 



YASDI   Documentation  

YASDI-10NE:KS1106 

 - 43 -  SMA Technologie AG 

5 Creation of a YASDI Application 

This chapter describes the creation of the simple shell application included in the 

YASDI package, as well as the YASDI libraries in the Linux version. 

5.1 Creation of the Linux Shared Objects 

The YASDI Linux libraries can be created with the following command sequence: 

cd projects/linuxlib 
 
make 
 
su 
 
xxx    (Password of the "root" user) 
 
make install 
 
exit 

If this is successful, the libraries (libyasdi.so, libyasdimaster.so, 

libyasdi_drv_serial.so) are installed at the file path "/usr/local/lib", and can be used 

subsequently. 

5.2 Creation of the Linux Shell Application 

The Linux version of the small shell application is created with the following 

commands: 

cd projects/projects/CommonShellUI 
 
make 
 
 

Afterwards, the program can then be started with: 

./YasdiShellUI 
 
 

For compilation of the program, the YASDI libraries must first be installed! 


	Introduction
	Software – Brief Overview
	Description of the Layers
	Physical Layer (Layer 1)
	Data Link Layer (Layer 2)
	Network Layer / Transport Layer (Layer 3/4)
	Session Layer / Presentation Layer (Layer 5/6)
	Application Layer (Layer 7)


	The Library Interfaces
	Data Types Used
	YASDI Master Library API
	Initialization Functions
	Functions for Sending Requests to Measurement Channels

	The YASDI Library API
	Interface Driver Control
	Monitored Transfer of SMA Data Packets
	Simple Slave API

	API Usage: An Example
	Initialization File

	Internal Structures
	Packet Buffer Management
	Installation of the Library Interfaces
	Unix (Linux)
	Windows

	Project Directory Structures

	Creation of a YASDI Application
	Creation of the Linux Shared Objects
	Creation of the Linux Shell Application


